电子元件

半导体基础知识

2025China.cn   2015年03月03日

  1. 本征半导体及其特点

  纯净的半导体称为本征半导体。在热“激发”条件下,本征半导体中的电子和空穴是成对产生的;当电子和空穴相遇“复合”时,也成对消失;电子和空穴都是载流子;温度越高,“电子—空穴”对越多;在室温下,“电子—空穴”对少,故电阻率大。

  2. 掺杂半导体及其特点

  ( 1 ) N 型半导体:在本征硅或锗中掺入适量五价元素形成 N 型半导体, N 型半导体中电子为多子,空穴为少子;电子的数目(掺杂 + 热激发) = 空穴的数目(热激发) + 正粒子数;半导体对外仍呈电中性。

  ( 2 ) P 型半导体:在本征硅或锗中掺入适量三价元素,形成 P 型半导体,其空穴为多子,电子为少子;空穴的数目(掺杂 + 热激发) = 电子的数目(热激发) + 负粒子数;对外呈电中性。

  在本征半导体中,掺入适量杂质元素,就可以形成大量的多子,所以掺杂半导体的电阻率小,导电能力强。

  当 N 型半导体中再掺入更高密度的三价杂质元素,可转型为 P 型半导体;反之, P 型半导体也可通过掺入足够的五价元素而转型为 N 型半导体。

  3. 半导体中的两种电流

  ( 1 )漂移电流:在电场作用下,载流子定向运动所形成的电流则称为漂移电流。

  ( 2 )扩散电流:同一种载流子从浓度高处向浓度低处扩散所形成的电流为扩散电流。

  4. PN 结的形成

  通过一定的工艺,在同一块半导体基片的一边掺杂成 P 型,另一边掺杂成 N 型, P 型和 N 型的交界面处会形成 PN 结。

  P 区和 N 区中的载流子存在一定的浓度差,浓度差使多子向另一边扩散,从而产生了空间电荷和内电场;内电场将阻多子止扩散而促进少子漂移;当扩散与漂移达到动态平衡时,交界面上就会形成稳定的空间电荷层(或势垒区、耗尽层),即 PN 结形成。

  5. PN 结的单向导电性

  PN 结正向偏置时,空间电荷层变窄,内电场变弱,扩散大于漂移,正向电流很大(多子扩散形成), PN 结呈现为低电阻,称为正向导通。正向压降很小,且随温度上升而减小。

  PN 结反向偏置时,空间电荷层变宽,内电场增强,漂移大于扩散,反向电流很小(少子漂移形成), PN 结呈现为高电阻,称为反向截止。反偏电压在一定范围内,反向电流基本不变(也称为反向饱和电流),且随温度上升而增大。

  6. PN 结的电容特性

  (1)势垒电容CB:当外加在PN结两端的电压发生变化时,空间电荷层中的电荷量会发生变化,这一现象是一种电容效应,称为势垒电容。CB是非线性电容。

  (2)扩散电容CD:当PN结正向偏置时,多子扩散到对方区域后,在PN结边界附近有积累,并会有一定的浓度梯度。积累的电荷量也会随外加电压变化,引起电容效应,称为扩散电容。CD也是非线性电容。

(转载)

标签:半导体 电子 我要反馈 
什么是新一代机器人界面(HMI)?
ABB协作机器人,自动化从未如此简单
优傲机器人下载中心
即刻点击并下载ABB资料,好礼赢不停~
西克
专题报道