不同种类的车轮对整车气动特性的影响也有所不同,但该方面研究多限于不同轮胎宽度以及不同胎面花纹的影响。目前,汽车底部的流场特性受到了广泛的重视[1,2],而车轮作为影响底部流场因素之一,其阻力值在整车的总阻力中占30%左右[3]。
在汽车车轮的设计中,轮辋辐板的设计是一个至关重要的环节。它不仅关系着车轮制动系统的散热,同时更影响汽车底部甚至整车的空气动力特性。轮辋辐板的设计是否合理是影响车轮周围以及车底气流流动的重要因素。采用流体动力学数值计算的方法,在参考模型试验数据的基础上,利用商业软件STAR-CD进行了流场的数值模拟计算,通过TECPLOT进行流场可视化处理,并结合车轮周围速度矢量场及车轮后方的流线对相应的流场进行了分析,得出了不同轮辋辐板下同一简化汽车模型外流场的流动规律,为轮辋辐板的设计提供理论参考。
2 几何模型的建立及网格划分
2.1设计方案
在轮辋辐板设计中,开孔的设计情况对气动阻力影响较大。为了对比分析开孔面积对气动力的影响,设计的开孔面积应按照一定的规律变化。设计中选用了典型的扇形开孔,其开孔面积的分配方式为:当开孔面积应一定时增大开孔的个数;开孔数相同时改变开孔的面积。对于SR14车轮模型(由实际使用的车轮适当简化得到),结合实际情况设计出了6种不同辐板。
车轮的外流场主要受车身下轮腔和车轮自身的影响。本文通过对流场的数值仿真及分析来完成对所设计轮辋辐板的流场特性的评价。采用了简化的车身模型,即模型具有车身前半部的特征。对于轮腔包络线的形状按照某国产车精确建模,并且给出了前轴的形状和位置。车身及其具有不同辐板的车轮模型的建立均在UNIGRAPHICS软件中完成。
2.2网格生成
在车轮的接地区域,车轮与地面夹角几乎为0,此处生成单元的内角将会接近0,致使单元质量差而影响流场计算的收敛性。为了保证网格单元的生成质量,根据车轮的实际变形情况对车轮接地区域进行了如下修正:在保证离地间隙的前提下,先将车轮接地部分切掉一段劣弧,然后将切除的边界拉伸至地面,形成的车轮外形。这样生成网格单元的内角均在30℃以上,从而确保计算能够进行并收敛。
计算网格采用四面体和六面体结合的方式。对于6种不同轮辋辐板的整车计算区域最后生成的网格数均为1X106~1.2x106之间。3 数值计算 对于6种不同的轮辋辐板,研究采用相同的车身与车轮模型、网格划分方案及计算区域,设置相同的边界条件,并采用相同的湍流模型,以使6种情况下数值计算结果具有可比性。
3.1 计算域选择
为再现汽车自然行驶状况,选取一个长方形计算区域。根据汽车模型,计算域前部取5倍车长,后部取10倍车长,上部取5倍车高,侧面取5倍车宽。
3.2湍流模型
理论上表达气体流动规律的方程为N-S方程,但目前由于计算机技术发展的限制,完全求解N-S方程的难度大,为此采用工程中广泛应用的雷诺时均N-S方程,计算模型均采用RNG k-ε湍流模型。
3.3边界条件
本文仿真的是汽车直线行驶在无风的道路上,流场为沿车身的纵向对称平面对称,并取左边1/2流场进行仿真计算。为此,将汽车的远前方及后方分别设置为进口和出口边界条件;右侧为流场的对称平面,设置为对称边界条件;上方、左侧及地面的边界均采用移动壁面(Moving Wall)边界条件;车轮采用旋转壁面边界条件。车轮的旋转角速度为100rad/s,远前方来流的速度为31.2 m/s;k与ε分别取0.146 014 6 m2/s2和0.030 337 85 m2/s3。
4 计算结果及分析
该仿真研究是在配置了 AMD3000 +的64位CPU, 1.5GB的内存及80G的SICI硬盘的工作站上完成的。模型S8阐明了计算出的流场的主要特性,该模型是实际应用的轮辋辐板模型。辐板开孔后气流速度明显下降,可知辐板开孔对车轮的气动特性有重要的影响。
4.1阻力系数
车轮气动阻力系数与模型的总气动阻力系数的计算结果及相应FO模型的试验值如表2所列。在车轮阻力系数计算中,正投影面积为车轮自身的投影面积。比较FO模型的CFD仿真与试验结果可知,车轮阻力系数以及总阻力系数的相对误差均在6%左右,这说明该研究中所采用的CFD仿真方案(包括湍流模型、网格方案及边界条件等)具有有效性和可行性。
并非车轮阻力系数大而整车的阻力系数也随之变大,这说明车轮与车身之间流场的相互干扰作用是阻力发生变化的一个主要原因。
通过模型S7,S8和S9的对比表明,随着辐板上开孔数的增加,总阻力系数减小,而车轮阻力系数呈不规则变化。
b.比较模型S8s,S8和S81可知,辐板上单个开孔面积增加,则车轮阻力系数增加,而总阻力系数呈不规则变化。
因此,在轮辋辐板设计中应充分考虑开孔的布置方式,以达到最佳的气动特性。
4.2轮腔内的流场
不同轮辋辐板对轮腔内气流特性的影响是最直接的也是最大的,该模拟试验的阴力变化原因也在于此。众所周知,阻力的增大是由于物体近表面流体中涡量增大所导致的,通过对此处的涡量分析可以得到相同的结论。A-A剖面得到的车轮横向的速度流场,从中可以看出车轮周围展向涡旋的情况。
由于辐板外侧的几何形状的改变,使得外侧涡的位置上移,车轮底部的速度有所增加,而速度梯度有所减小。由于辐板开孔数的增加和开孔面积的变化,车轮左上角的流场中有新涡旋产生。在图4d、f中,该位置上的涡旋(剪切涡1)已经十分清楚,这也是车轮阻力略有增加的原因。而模型S7阻力增加的原因是由于从开孔处溢出的流体恰好增加了外侧涡(剪切涡1)的强度。由此可知,均匀开孔的数目与车轮阻力系数并不是简单.的线性关系,而是存在一个使车轮阻力系数最小的极值点。
随着辐板开孔面积的增大,侧面涡有加强的趋势,这是因为面积的增大导致更大量的气体交换,所以横向通过车轮的气体流量增加,这样势必为车轮增加了额外的阻力,导致车轮阻力系数增大(模型S8s,S8,S81数值依次增加)。
4.3车轮后部流动
模型底部的流场特性影响着汽车的行驶稳定性。在这一区域中,车轮及其轮辋辐板对汽车底部流场的影响为主要因素。由图5可以看出,由于辐板的不同而导致车身底部流场不同:模型FO的后部有一个明显的剪切涡,并且被拖拽的很长,在车身底部的区域中没有破裂的现象;在模型S7中,由于辐板开孔,车轮后部的涡有被拉长的趋势,并且涡的核心略有下移;模型S8则出现了一对剪切涡,气流的旋转方向相反,这种情况的出现说明在此处来流的能量、被大量消耗,同时两个涡迅速破裂,没有向后拖拽。综合6种模型计算结果可知,在车轮后部可以形成两个不同种类的涡:一种是粗壮的剪切涡并同时被向后拖拽,在这种情况下容易消耗较大的能量;另一种是在车轮后部形成了一对剪切涡,没有被向后拖拽,虽然在局部形成这样的涡耗能较大,但就整体而言,这种情况的阻力较小。以上分析说明,车身底部的拖拽涡是此处消耗能量的关键因素。5结论 在该研究中,就汽车所受的总阻力系数而言,不同形状的轮辋辐板可使其值增加2倍以上,因此在轮辋辐板的设计中,应充分考虑它引起的空气动力特性的变化。
通过对设计出的不同辐板的流场进行的CFD研究与分析,可得出如下结论:
a.车轮和车身之间流场的相互干扰是阻力变化的一个主要原因。
b.由于辐板几何形状的改变,使得外侧涡的位置上移,车轮底部的气流速度有所增加,而速度梯度有所减小。
随着辐板开孔面积的增大,侧面涡有加强的趋势,对车轮增加了额外的阻力。
d.在车轮后部可以形成两种不同的涡,一种是粗壮的剪切涡,另一种是在车轮后部形成了一个涡对;车身底部的拖拽涡是消耗能量的关键因素。
(转载)