技术

对重型柴油机SCR系统进行布置优化

2025China.cn   2009年02月03日

1  SCR系统网格和边界条件位置图

 

在某重型国Ⅳ柴油机的开发过程中,利用CFD工具对管道的几何形状、尿素喷射装置的位置及喷射角度进行优化设计,从而保证在混和管路不出现粒子撞壁后的结晶。通过对SCR载体入口速度均匀性和整个载体的压力损失情况进行计算分析,保证载体入口速度分布均匀,整个系统产生较小的压力损失。

 

计算物理模型及边界条件

 

整个SCR系统的网格特点和边界条件位置如图1所示。其中管路采用六面体和O-grid网格,SCR载体内部采用四面体网格,SCR系统中的载体和插孔管利用多孔介质来模拟。

 

尿素水溶液喷雾模拟是一个复杂的过程,其中包括液滴的雾化、破碎、蒸发、液滴与气体能量动量交换、粒子撞壁过程及液膜形成等。一般采用DDM方法来描述离散液滴分布,它不考虑全部液滴,而只处理其中若干具有代表性的样本。每个样本都代表一定数量的、大小和状态都完全相同的液滴。用拉格朗日方法跟踪这些液滴样本的运动,即求解描述其运动轨迹和传热传质过程的一组微分方程。Reitz/Diwakar的破碎模型用来模拟破碎过程。尿素水溶液的特性按照SAE上提供的物理特性来设置。本次计算没有考虑尿素水溶液的水解、热解等化学反应特性,以水蒸气的分布来代替NH3的分布。

 

计算结果分析

 

SCR系统混和管的布置设计对SCR载体内的化学反应有很大的影响。在国Ⅳ柴油机的开发过程中,相当多的工作是对混和管进行优化设计。本文主要利用CFD工具对两个喷射位置不同喷射角度进行优化设计,从而保证在混和管路不出现粒子撞壁后的结晶。图2中的红色线条代表喷射方向与水平方向一致,蓝色线条代表喷射方向向下偏离水平方向5°,绿色线条代表喷射方向向下偏离水平方向10°。

 

优化后粒子轨迹

 

计算表明在低负荷时,粒子轨迹受排气流的影响较小,粒子沿着喷射方向运动,与壁面碰撞的粒子数量少。但是在大负荷下,粒子受排气流的影响较大,粒子被吹向管道的一侧,容易在壁面形成液膜。由于喷射的粒子大小不一,体积较小的粒子最容易被吹偏。

 

结晶主要出现在小负荷的情况下,此时排气流量速度低,对粒子的运动轨迹影响小。如果安装角度偏差,粒子就会与管道壁面碰撞,出现结晶现象。而对于大负荷,虽然气流对粒子轨迹影响大,尤其是对小直径的粒子,但是由于排气温度高,粒子溶液蒸发,就是碰撞到管道壁面,也会很快蒸发,而不会结晶。高温管道壁面对粒子起到加速蒸发的作用。但是如果粒子沉积后降低了壁面温度,则壁面对粒子起到冷却的作用,更容易发生沉积结晶现象。

 

载体入口的速度及压力分布

 

催化载体入口的速度分布是否均匀直接影响催化剂的催化转化效率。流速不均匀会在载体中心区域产生过高的气流速度和温度,加剧催化剂的劣化速度,缩短其使用寿命。另外,流速分布不均匀还会导致载体径向温度梯度过大,产生较大的热应力梯度,产生热疲劳破坏。通常利用速度均匀性系数来评价入口的速度是否均匀。速度均匀系数越大,入口的速度越均匀;系数越小,速度分布越不均匀。通常需要速度均匀系数在0.8以上。

 

 

(转载)

标签: 重型柴油机 SCR系统 我要反馈 
什么是新一代机器人界面(HMI)?
ABB协作机器人,自动化从未如此简单
优傲机器人下载中心
即刻点击并下载ABB资料,好礼赢不停~
西克
专题报道